If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-35=3x
We move all terms to the left:
x^2-35-(3x)=0
a = 1; b = -3; c = -35;
Δ = b2-4ac
Δ = -32-4·1·(-35)
Δ = 149
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{149}}{2*1}=\frac{3-\sqrt{149}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{149}}{2*1}=\frac{3+\sqrt{149}}{2} $
| x+4=20-x-x=4-3 | | 4x^2-2x=3=0 | | t+15+2t–17+2t=180 | | -3x(2x-5)-4=2(-4x-6) | | 4(y-8)=-16 | | 41+44p+26+26p+45=180 | | 2g-2/2=-46 | | 15/2x=15/4 | | -16x^2+96x-12=120 | | 44+44+x=180 | | 3s+49+5s-46=180 | | 17=6c+-21 | | 47+47+x=180 | | (1/5)^x-7=25^3x | | 3z+1+3z+1+4z-1+4z-1=70 | | 0.04=0.4(0.02)+x(0.05) | | 0=10x^2+8x+7 | | 30+5x-6+2x-17=180 | | 59+59+x=180 | | 4x-21=7x+24 | | 4u-11+76+5u-6=180 | | 8x^2+12x-11=6+x | | 58+64+x=180 | | .-13=2b-b-10 | | 9r-3=6 | | 10x-5=2x+5 | | 9j+4=13)-6 | | 13a-45=36+4a | | 74+32+x=180 | | 25-0.5x=16.5 | | 57+66+a=180 | | 76.50/0.45=c |